首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2289篇
  免费   140篇
  2021年   10篇
  2020年   11篇
  2019年   19篇
  2018年   26篇
  2017年   25篇
  2016年   34篇
  2015年   52篇
  2014年   70篇
  2013年   167篇
  2012年   109篇
  2011年   115篇
  2010年   51篇
  2009年   80篇
  2008年   108篇
  2007年   87篇
  2006年   122篇
  2005年   112篇
  2004年   109篇
  2003年   119篇
  2002年   135篇
  2001年   37篇
  2000年   55篇
  1999年   50篇
  1998年   49篇
  1997年   34篇
  1996年   34篇
  1995年   35篇
  1994年   30篇
  1993年   26篇
  1992年   34篇
  1991年   24篇
  1990年   22篇
  1989年   29篇
  1988年   38篇
  1987年   30篇
  1986年   29篇
  1985年   18篇
  1984年   23篇
  1983年   25篇
  1982年   31篇
  1981年   28篇
  1980年   20篇
  1979年   25篇
  1978年   14篇
  1977年   14篇
  1976年   20篇
  1975年   9篇
  1974年   20篇
  1973年   19篇
  1972年   8篇
排序方式: 共有2429条查询结果,搜索用时 15 毫秒
91.
Cellular differentiation proceeds along complicated pathways, even when it is induced by extracellular signaling molecules. One of the major reasons for this complexity is the highly multidimensional internal dynamics of cells, which sometimes causes apparently stochastic responses in individual cells to extracellular stimuli. Therefore, to understand cell differentiation, it is necessary to monitor the internal dynamics of cells at single-cell resolution. Here, we used a Raman and autofluorescence spectrum analysis of single cells to detect dynamic changes in intracellular molecular components. MCF-7 cells are a human cancer-derived cell line that can be induced to differentiate into mammary-gland-like cells with the addition of heregulin (HRG) to the culture medium. We measured the spectra in the cytoplasm of MCF-7 cells during 12 days of HRG stimulation. The Raman scattering spectrum, which was the major component of the signal, changed with time. A multicomponent analysis of the Raman spectrum revealed that the dynamics of the major components of the intracellular molecules, including proteins and lipids, changed cyclically along the differentiation pathway. The background autofluorescence signals of Raman scattering also provided information about the differentiation process. Using the total information from the Raman and autofluorescence spectra, we were able to visualize the pathway of cell differentiation in the multicomponent phase space.  相似文献   
92.
Rhodopsin is a G-protein-coupled receptor, in which retinal chromophore acts as inverse-agonist or agonist depending on its configuration and protonation state. Photostimulation of rhodopsin results in a pH-dependent equilibrium between the active state (Meta-II) and its inactive precursor (Meta-I). Here, we monitored conformational changes of rhodopsin using a fluorescent probe Alexa594 at the cytoplasmic surface, which shows fluorescence increase upon the generation of active state, by single-molecule measurements. The fluorescence intensity of a single photoactivated rhodopsin molecule alternated between two states. Interestingly, such a fluorescence alternation was also observed for ligand-free rhodopsin (opsin), but not for dark-state rhodopsin. In addition, the pH-dependences of Meta-I/Meta-II equilibrium estimated by fluorescence measurements deviated notably from estimates based on absorption spectra, indicating that both Meta-I and Meta-II are mixtures of two conformers. Our observations indicate that rhodopsin molecules intrinsically adopt both active and inactive conformations, and the ligand retinal shifts the conformational equilibrium. These findings provide dynamical insights into the activation mechanisms of G-protein-coupled receptors.  相似文献   
93.
Rhodopsin is a G-protein-coupled receptor, in which retinal chromophore acts as inverse-agonist or agonist depending on its configuration and protonation state. Photostimulation of rhodopsin results in a pH-dependent equilibrium between the active state (Meta-II) and its inactive precursor (Meta-I). Here, we monitored conformational changes of rhodopsin using a fluorescent probe Alexa594 at the cytoplasmic surface, which shows fluorescence increase upon the generation of active state, by single-molecule measurements. The fluorescence intensity of a single photoactivated rhodopsin molecule alternated between two states. Interestingly, such a fluorescence alternation was also observed for ligand-free rhodopsin (opsin), but not for dark-state rhodopsin. In addition, the pH-dependences of Meta-I/Meta-II equilibrium estimated by fluorescence measurements deviated notably from estimates based on absorption spectra, indicating that both Meta-I and Meta-II are mixtures of two conformers. Our observations indicate that rhodopsin molecules intrinsically adopt both active and inactive conformations, and the ligand retinal shifts the conformational equilibrium. These findings provide dynamical insights into the activation mechanisms of G-protein-coupled receptors.  相似文献   
94.
As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group “hemichordates.” Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord‐forming region in acorn worm juveniles is expressed in the club‐shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord. genesis 52:925–934, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
95.
Optimal defense theory (ODT) states that the plant tissue with the highest value to fitness will receive the most protection compared with other plant parts. ODT can be applied to the differences in defenses among floral organs, although most studies have concentrated on the comparison between leaves and flowers. Using Iris gracilipes, we investigated whether ODT is supported when primary and accessory floral organs and leaves are distinguished. We found that anthers and perianths tended to be attacked more severely than ovaries and leaves in the bud and flower stages and that anthers contained the highest nitrogen and phosphorus concentrations. Although ovaries were also found to contain high nitrogen and phosphorus concentrations, they were less severely attacked by herbivores than anthers, perhaps because ovaries contained the highest condensed tannins concentrations among the floral organs except for perianths in the flower stage. Thus, noting that the number of ovules is very much smaller than that of pollen grains, we concluded that ovaries are the most intensively protected, consistent with the prediction of ODT as applied to floral organs. ODT is applicable to the difference in defense allocation among floral organs.  相似文献   
96.

Aims

Dietary habits are crucial factors affecting metabolic homeostasis. However, few animal experiments have addressed the effects of long-term feeding with soft food on parameters reflecting systemic health.

Main methods

Using mice, we compared the effects of short (3 days) and long (17 weeks from weaning) feeding periods between powdered food and normal pellet food on the levels of blood glucose, serum levels of insulin, catecholamines, and corticosterone, blood pressure, and/or social interaction behaviors. In addition, the effects of a human glucagon-like peptide-1 analog, liraglutide (a new drug with protective effects against neuronal and cardiovascular diseases), were compared between the powder and pellet groups.

Key finding

(i) Powdered food, even for such a short period, resulted in a greater glycemic response than pellet food, consistent with powdered food being more easily digested and absorbed. (ii) Long-term feeding on powdered food induced hyperglycemia and related systemic signs of illness, including increases in serum adrenaline, noradrenaline, and corticosterone, higher blood pressures (especially diastolic), and increased social interaction behaviors. (iii) Liraglutide, when administered subcutaneously for the last 2 weeks of the 17-week period of feeding, improved these changes (including those in social interaction behaviors).

Significance

The hyperglycemia associated with long-term powdered-food feeding may lead to certain systemic illness signs, such as elevations of blood glucose, hypertension, and abnormal behaviors in mice. Mastication of food of adequate hardness may be very important for the maintenance of systemic (physical and mental) health, possibly via reduction in the levels of blood glucose and/or adrenal stress hormones (catecholamines and glucocorticoids).  相似文献   
97.
Enzyme-dead mutations in the herpes simplex virus 1 UL12 gene that abolished its endo- and exonuclease activities only slightly reduced viral replication in cell cultures. However, the UL12 null mutation significantly reduced viral replication, suggesting that a UL12 function(s) unrelated to its nuclease activities played a major role in viral replication. In contrast, the enzyme-dead mutations significantly reduced viral neurovirulence in mice, suggesting that UL12 nuclease activities were critical for viral pathogenesis in vivo.  相似文献   
98.
This study investigated whether wearing common white sportswear can reduce heat stress more than being semi-nude during exercise of different intensities performed under radiant heat and wind conditions, such as a hot summer day. After a 20-min rest period, eight male subjects performed three 20 min sessions of cycling exercise at a load intensity of 20 % or 50 % of their peak oxygen uptake (VO2peak) in a room maintained at a wet bulb globe temperature (WBGT) of 28.7?±?0.1 °C using two spot lights and a fan (0.8 m/s airflow). Subjects wore common white sportswear (WS) consisting of a long-sleeved shirt (45 % cotton and 55 % polyester) and short pants (100 % polyester), or only swimming pants (SP) under the semi-nude condition. The mean skin temperature \( \left(\overline{T} sk\right) \) was greater when subjects wore SP than WS under both the 20 % and 50 % exercise conditions. During the 50 % exercise, the rating of perceived exertion (RPE) and thermal sensation (TS), and the increases in esophageal temperature (ΔTes) and heart rate were significantly higher (P?<?0.001–0.05), or tended to be higher (P?<?0.07), in the WS than SP trials at the end of the third 20-min exercise session. The total sweat loss (m sw,tot) was also significantly higher in the WS than in the SP trials (P?<?0.05). However, during the 20 % exercise, the m sw,tot during exercise, and the ΔTes, RPE and TS at the end of the second and third sessions of exercise did not differ significant between conditions. The heat storage (S), calculated from the changes in the mean body temperature (0.9Tes + 0.1 \( \overline{T} sk \) ), was significantly lower in the WS trials than in the SP trials during the 20 min resting period before exercise session. However, S was similar between conditions during the 20 % exercise, but was greater in the WS than in the SP trials during 50 % exercise. These results suggest that, under conditions of radiant heat and wind at a WBGT greater than 28 °C, the heat stress associated with wearing common WS is similar to that of being semi-nude during light exercise, but was greater during moderate exercise, and the storage of body heat can be reduced by wearing WS during rest periods.  相似文献   
99.
In torque generation by the bacterial flagellar motor, it has been suggested that electrostatic interactions between charged residues of MotA and FliG at the rotor-stator interface are important. However, the actual role(s) of those charged residues has not yet been clarified. In this study, we systematically made mutants of Vibrio alginolyticus whose charged residues of PomA (MotA homologue) and FliG were replaced by uncharged or charge-reversed residues and characterized the motilities of those mutants. We found that the members of a group of charged residues, 7 in PomA and 6 in FliG, collectively participate in torque generation of the Na+-driven flagellar motor in Vibrio. An additional specific interaction between PomA-E97 and FliG-K284 is critical for proper performance of the Vibrio motor. Our results also reveal that more charged residues are involved in the PomA-FliG interactions in the Vibrio Na+-driven motor than in the MotA-FliG interactions in the H+-driven one. This suggests that a larger number of conserved charged residues at the PomA-FliG interface contributes to the robustness of the Vibrio motor against mutations. The interaction surfaces of the stator and rotor of the Na+-driven motor seem to be more complex than those previously proposed in the H+-driven motor.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号